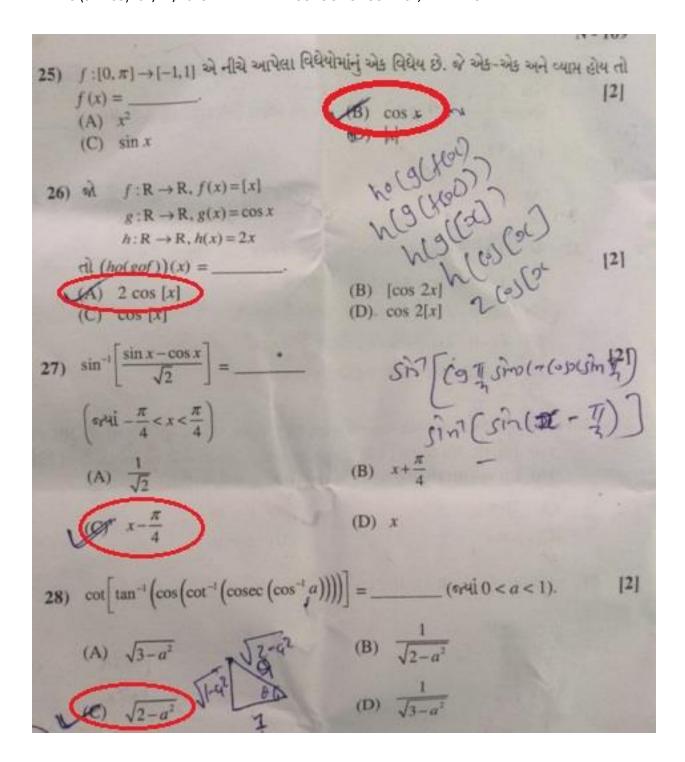
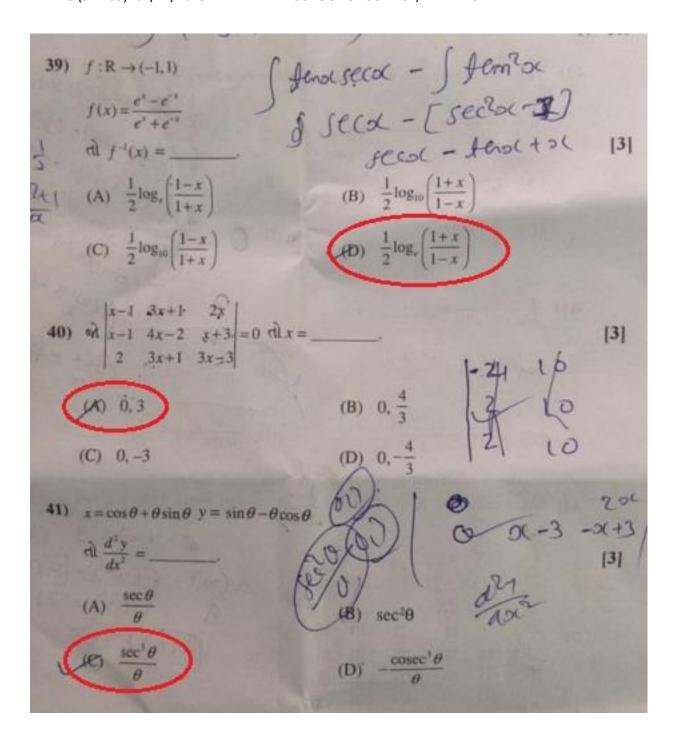


	14-102
2)	[1]
(A) 2.8 (B) -2,8 (D) -2,-8	
3) $\sqrt[3]{A} = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ chi adj $A = \underline{\hspace{1cm}}$	[1]
(A) $\begin{bmatrix} -2 & 3 \\ 3 & -2 \end{bmatrix}$ (B) $\begin{bmatrix} -2 & -3 \\ 3 & 2 \end{bmatrix}$	
(C) $\begin{bmatrix} -2 & 3 \\ -3 & 2 \end{bmatrix}$ (95) A ^T	
4) $y = e^{-2\log_x x}$ cù $\frac{dy}{dx} = \underline{\hspace{1cm}}$	[1]
$(B) -\frac{1}{x}$	5
(C) 2x	4400
	[1]
(A) $-5\sqrt{26}$ (D) $-\frac{1}{ x \sqrt{x^2+1}}$	
10/6	3.783

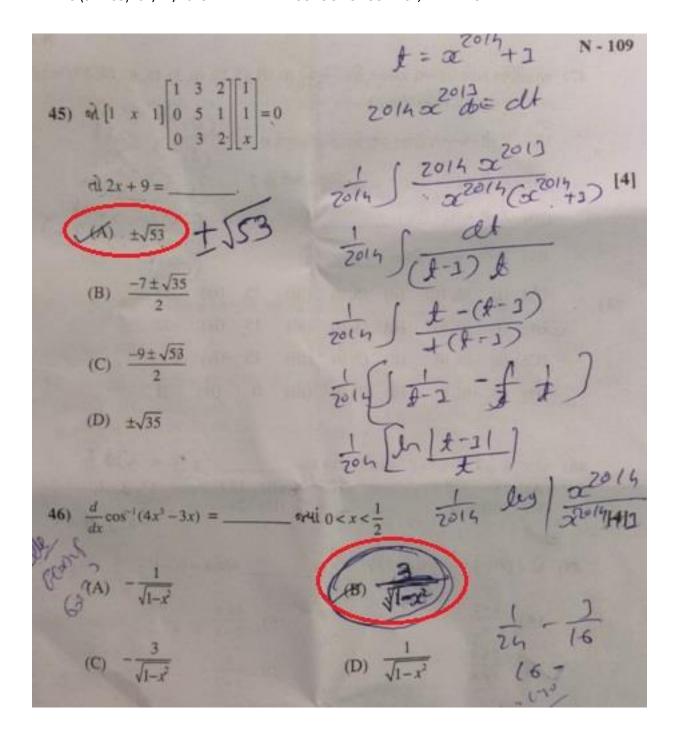

$f(x) = \begin{cases} \frac{\sin 7x}{Kx}; & x \neq 0 \\ x = 0 \end{cases} \text{ and } x = 0$	ઘેય ƒ સતત હોય તો K = [1]
$(C) \frac{1}{2}$ $x=0$	(B) 1 - SMANC = 1 (D) -7 FILOC
7) $\frac{d}{dx} \left[3\cos x - 4\cos^3 x \right] = \underline{\qquad}$	- 601000 [1]
8) $\int \sec^2 \left(3 - \frac{1}{5}x\right) dx = \underline{\qquad} + c.$	(B) $-3 \sin 3x$ $3 \sin 3x$ [1]
$\sqrt{3-3} = -5\tan\left(3-\frac{x}{5}\right)$	(B) $5\tan\left(3-\frac{x}{5}\right)$ - 5 tem 5
(C) $\tan\left(3-\frac{x}{5}\right)$	(D) $-\frac{1}{5}\tan\left(3-\frac{x}{5}\right)$ $= \frac{e^{2\lambda}}{2^{2}+2}$ $= \frac{e^{2\lambda}}{116}$
9) $\int \frac{dx}{e^t + e^{-t}} = \frac{1}{(e^t)^{1/2}} + c.$	(B) log e + e - 1 2 cl
(C) $\log e^x - e^{-x} $ 10) $\int \frac{10x^9 + a10^{-1}}{x^{10} + 10^4} dx = \log x^{10} + 10^4 + c \cot a$	Deat &
(A) log 10 ^s	=

11) $\int e^{4\log x} (x^3 + 1)^{-1} dx = \underline{\qquad} + c.$ (B) $-\log x^4 ^2$ (D) $-\frac{4}{5}$	
$(B) -\log x^2 + 1 $ $(B) -\log x^2 + 1 $ $(D) -\frac{4}{(x^2 + 1)^2}$	
(C) $\log x^3+1 $ (D) $-\frac{4}{(x^3+1)^2}$	
12) $\int \frac{1}{3t^2 + 4} dt = A \tan^{-1}(Bt) + c \operatorname{rel} AB = $ [1]	
12) $\int \frac{1}{3r^2 + 4} dt = A \tan^{-1}(BI) + C (11 AI) = \frac{1}{2}$ (A) 1 (B) $\frac{1}{2}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$	
13) $\int e^{x} \cdot e^{x} dx = $ + c. (A) $\frac{1}{2}e^{x}$ (B) e^{x} $e^{$	
14) ઘટનાઓ A અને B માટે જો $P(A) = \frac{1}{4}$, $P(\frac{A}{B}) = \frac{1}{2}$ અને $P(\frac{B}{A}) = \frac{2}{3}$ હોય $P(\frac{B}{A}) = \frac{2}{3}$ હોય	dì
(B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{1}{6}$	

15) એક સમતોલ પાસાને 4 વખત ઉ તરીકે ગણીએ છીએ. તેો સફળ	છાળવામાં આવે છે. પાસા પર યુગ્મ તા માટેના વિતરણનું વિચરણ	ા સંખ્યા આવે તેને આપણે સ છે.	ફળતા [1]
(A) 1/4 (28)	1) (C) $\frac{1}{2}$	(D) 0	6
16) વ્યક્તિ A સાચું બોલે તેની સંભા ઘટના વિશે બોલવાનું હોય ત્ય છે.	ાવના ⁴ છે. અને વ્યક્તિ B સાચું બે તારે બંને વ્યક્તિઓનો અભિપ્રાય િ	ોલે તેની સંભાવના $\frac{3}{4}$ છે. કો	ઈપણ 🕈
(A) $\frac{4}{5}$	(B) 1/5	1296 1296	-
$\sqrt{\frac{7}{20}}$	(D) 3/20	in P9	
17) A અને B નિરમેક્ષ ઘટનાઅ P(B) =	તો છે. જો P(A ∪ B) = 0.4	4 અને P(A) = 0.3 લોક	(d)
(A) $\frac{2}{7}$	(B) $\frac{3}{7}$		
West 1/7	(D) 4/7		

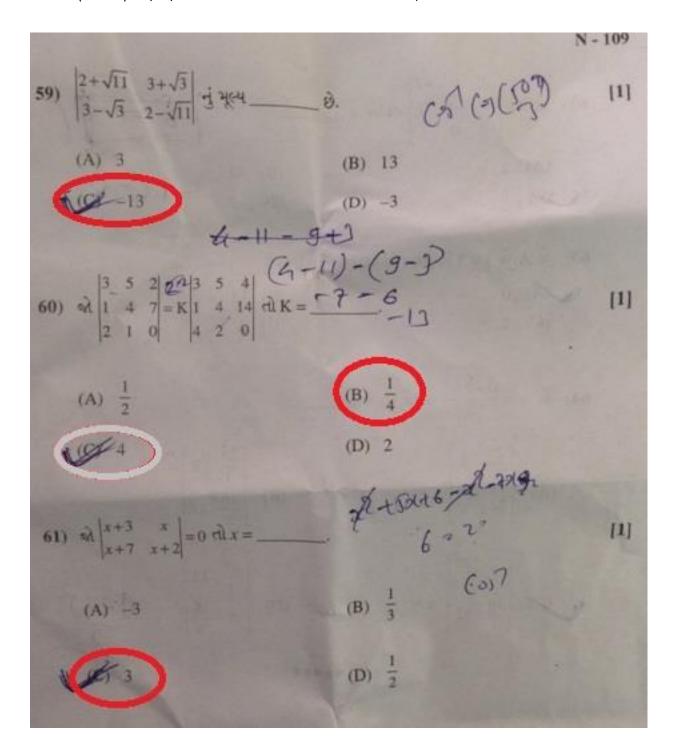

18) વિદ્યાર્થ	િં તરવેંધો ન	હોય તેની	સંભાવના	4 5 छे. 5 विध	ાર્થીઓમાંથી	4 વિદ્યાર્થીઓ	તરવૈયા હોય	તેની
સંભાવ		ð.				1-10		[1]
(A)	$\left(\frac{4}{5}\right)^4$			(B)	$5C_4\left(\frac{4}{5}\right)^4$	3	2	(
36	$4\left(\frac{1}{5}\right)^4$)		(D)	$\left(\frac{1}{5}\right)^3$	4	KX 1	2
19) ધારો	કે યાદચ્છિક	ચલ X નું	સંભાવના હિ	વેતરણ નીચે	મુજબ છે :		0	
30.	X = x	0	1	2	3	FEA	100-2	
	P(x)	1/4	1/8	$\frac{1}{2}$	1/8	R	到一	2
EC	5X - 2) -0	કિંમત	3)	5-2	[1]
(A	$\frac{13}{2}$			(B)	9 2	1 +1+2	七万	-
We Co	$\sqrt[4]{\frac{11}{2}}$			(D)	-	8 482	(3)	TIZ
20) sh	P(x) = cx	$x_{i, X} = 1, 2$,, 10 સં	ભાવના વિતર	લ્ટા હોય તો	c ની કિંમત _	धार्य	ाग
(/	365			(B	345			
((2) 1/335			11/18	385)		

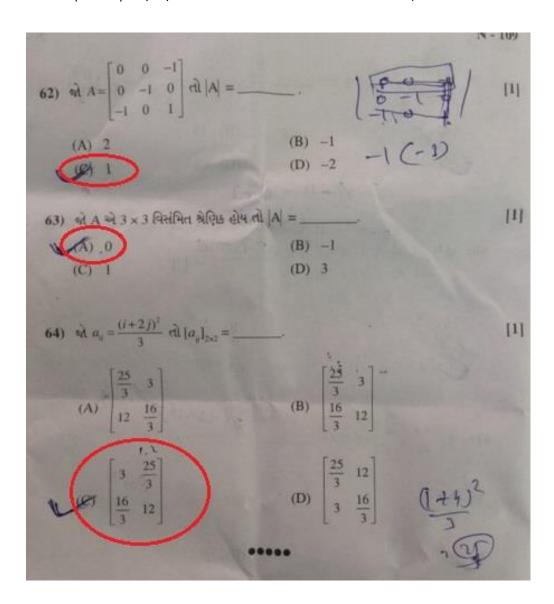
21) ગણિતનો એક પ્રશ્ન ત્રણ વિદ્યાર્થીઓને આપવામાં આવે છે. વિદ્યાર્થીઓ આ પ્રશ્ન ઉકલી શકે તેની સંભાવના $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ છે. ગમે તે એક વિદ્યાર્થી આ પ્રશ્નનો ઉકેલ શોધી કાઢે તેની સંભાવના [1] 8. (D) 8 27 35 22) ધારો કે .r અને y એ સુરેખ આયોજનના પ્રશ્નનો ઇષ્ટત્તમ ઉકેલ હોય તો Z = __ (A) 1x+(1+1) v. 0 < 1 < 1 \ \text{up} \ \text{Ebenty Bit dist.} (M) તેx+(1-λ)y,0≤λ≤1 પણ ઇંપ્ટતમ ઉકેલ હોય. (C) λx+(1-λ)y, λ∈ R 451 02514 954 614. (D) $\lambda x + (1+\lambda)y$, $\lambda \in \mathbb{R}$ पश ईप्टतम ઉકલ सेय. 23) કોઈક મર્યાદાઓની અસમતા સંહતિથી રચાતા શક્ય ઉકલના પ્રદેશના શિરોબિંદ્રઓ (0, 10), (5, 5), (10, 10), (0, 30) છે. ધારો કે Z = px + qy જયાં p, q > 0 જો Z ની મહત્ત્વમ કિંમત શિરોબિંદ (10, 10) અને (0, 30) બંને આગળ મળે તો p તથા g વચ્ચેનો સંબંધ (A) 2p = q(C) p=q24) $\stackrel{\circ}{\sim} f: \mathbb{R} - \{-1\} \rightarrow \mathbb{R} - \{-1\}, f(x) = \frac{1-x}{1+x} \stackrel{\circ}{\sim} (x) = \frac{1-x}{1+x}$ [2] (D)



29)
$$\sin^{-1}\left(\frac{x}{13}\right) + \sec^{-2}\left(\frac{13}{5}\right) = \frac{\pi}{2} \text{ th } x + \frac{1}{2} \text{ then } \frac{\pi}{2} \text{ then$$

34) વિધેય $f(x) = x + \frac{1}{x}, x \in [1, 3]$ પર મધ્યક	માન પ્રમેય લગાડતા ૮ નું મૂલ્ય મળે. [2]
(A) 3	图 13 2-1
(C) 1	(D) $-\sqrt{3}$ $1-\frac{1}{c^2}=\frac{\frac{10}{5}-2}{3-1}$
$35) \int \frac{\sin x}{1+\sin x} dx = \underline{\qquad} + c$	(-1 2 42 121 (-1 2 42 121
$(A) \sec x + \tan x - x$	(B) $\tan x - \sec x + x$ -2 = 1
sec x - tan x + x	(B) $\tan x - \sec x + x$ $ -\frac{2}{3} = \frac{1}{2}$ (D) $\sec x - \tan x - x$ $ -\frac{2}{3} = \frac{2}{2}$
36) જો દ્વિપદી વિતરણના પ્રચલો $n = 6$ અને p હોય.	= 0.40 હોય તો મધ્યક અને વિશ્વરણ
(K) 2.4, 1.44	(B) 2.4, 1.24 Plate 1
(C) 2.4, 14.4	(D) 2.4, 0.14
37) હેતુલફ્રી વિધેષ Z = 30x - 30y + 1800 છે એ(15, 0), (15, 15), (10, 20), (0, 20) અને	રે (0, 15) છે. Z ની ન્યૂનતમ કિંમત કયા બિફ્બે પ્રાપ્ત
200 and 2 1 1000 1200	350 [2]
(C) (0, 15)	(B) (15, 0) (D) (10, 20)
	r≥0 y≥0 વી સ્થાતા સીમિત શક્ય ઉકલના પ્રદેશનું
નીચેનામાંથી કર્યું બિંદુ શિરોબિંદુ નથી ? (A) (3.0)	(B) (0, 0)
(C) (0, 2)	(D) (0, 5)


(A) (C) 43) \int_{-x}^{-}	$\frac{1}{16}$ $\frac{1}{8}$	$\frac{1}{r} = \frac{1}{r}$	2014 + 1 x ²⁰¹⁴	_+c	x+qcc	(B) (B)	$\frac{1}{2} \int_{2}^{2} 2 \sin (3 \sin (2 \sin (2 \sin (2 \sin (2 \sin (2 \sin (2 \sin ($
(C)	E(X E(G V(3	$(7) = _{-}$ $(3) = _{-}$	(2) (2) (2)	370 250		36 36 81 81	الا عليه الا الا الا عليه الله الله الله الله الله الله الله ا



	371.1735
47) જો સીમિત શક્ય ઉકેલના પ્રદેશના શિરોબિંદુઓ $(0,0)$, $(5,0)$, $(6,0)$ હોય તો, હેતુલક્ષી વિધેય $Z = 3x - 4y$ માટે	20 [4]
ા ૧ માનગ દિયત ક્યા ઊરોબિંદએ મળે છે ?	(0) 300
(ii) Z ની મહત્તમ કિંમત કયા શિરોબિંદુએ મળે છે ?	617 3-15
(iii) Z ની મહત્તમ કિંમત છે.	600 2 -32
(iv) Z ની ન્યૂનતમ ઉંમત છે.	COID
(A) (i) (4 10) (ii) (5,0) (iii) 15 (iv)	-28
(i) (0,8) (ii) (5,0) (iii) 15 (iv)	-32
(C) (i) (0,0) (ii) (5,0) (iii) 15 (iv)	0
(D) (i) (0,8) (ii) (0,0) (iii) 0 (iv)	-32
48) $\Re z \approx a * b = a^2 + b^2 \iff (3*2)*4 = (B) 185$ (C) 180	9+4004 [1]
49) $\Re f(x) = 1 + \frac{1}{x} \operatorname{dia} f\left[f\left(\frac{1}{x}\right)\right] = \underline{\qquad} \operatorname{sydi} x = \underline{\qquad}$	≠0,-1 [1]
(A) $\frac{x+1}{x}$ (B) $\frac{1+x}{2+x}$	
$(D) \frac{x}{x+1}$	

50) (a) $f: R \to R, f(x) = \frac{2x+1}{2}$ $f: R \to R, g(x) = x-2$	
$(80f)(\frac{2}{3}) = \frac{2}{2(1-2)}$	[1]
(A) $-\frac{6}{5}$ (B) $\frac{6}{5}$ $2\alpha + 1 - 5$	
$(C) \frac{5}{6}$	[1]
51) ગણ Z પર a*b=a+b-10 개호 તટસ્થ ઘટક છે. 건 (2) -) (A) -10 (B) -5 (D) 1	1.1
52) $A = \{1, 2, 3\}, B = \{1, 4, 9\}, f: A \rightarrow B, f(x) = x^2 \text{ ril } f^{-1} = \frac{1}{4} = \frac$	[1]
52) $A = \{1, 2, 3\}, B = \{1, 4, 9\}, f: A \rightarrow B, f(x) = x^{2} \text{ of } f' = \{1, 4, 9\}, f' = x^{2} \text{ of } f' = $	
53) sin	[1]
(D) R (12)	
54) $\sin\left(\tan^{-1}\frac{12}{5}\right)$ - $\frac{1}{3}$ + $\frac{12}{13}$ = $\frac{12}{13}$ = $\frac{12}{12}$ (B) $\frac{5}{13}$ = $\frac{12}{12}$	[1]
(C) $\frac{12}{5}$ (D) $\frac{3}{5}$	

Charles British Britis	N-109
55) $\tan \left[\cos^{-1}\left(\cos\frac{50\pi}{3}\right)\right]$ -il Brick	_8. (J(177- π) 111 A
$(A) \frac{1}{\sqrt{3}}$	# -15) - COST 4
(C) √3	(D) -1 + ton[TI -]
56) $\Re \cos^{-1} \frac{4}{5} + \csc^{-1} \frac{5}{3} = \cot^{-1} K \Re u \operatorname{di } K$	K=
(A) $\frac{1}{25}$	(B) 24 7 7 7 (B) (B)
W 7 24	(D) 3 7 July 2
57) $6\lambda 4\sin^{-1}x + 3\cos^{-1}x = 2\pi \text{ ril } x =$	P (3+ 1/2 111
(A) $-\frac{1}{2}$	(B) 0 (1x12)
	(D) \$\frac{\sqrt{3}}{2} \cdot 60 \text{(D)}
F .37	50 0 9-4
58) $\cos \left[2 \cot^{-1} \frac{3}{2} \right] + \frac{1}{3} + 1$	801 2 kid + 90 [1]
(A) $\frac{12}{13}$	(B) 3 360 2 5
(C) 5/12	13 Jon 3

Prepared by NIB school Teachers.

Thank You©